JETIR.ORG ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR) An International Scholarly Open Access, Peer-reviewed, Refereed Journal

AN INVESTIGATION ON A FEW PROPERTIES OF THE SUBGROUP LATTICE OF 2 × 2 MATRICES OVER Z₁₃

R. HEMALATHA¹, R. MURUGESAN², P. NAMASIVAYAM³,

 ¹Research Scholar, Reg. No:17221072092003, Department of Mathematics The MDT Hindu College, Pettai,
²Associate Professor & Head, Department of Mathematics (SF), St. John's College, Palayamkottai-627002, Tamilnadu, India
³Associate Professor & Head, Department of Mathematics, The MDT Hindu College, Pettai

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti Tirunelveli-627012)

Abstract: In this article, the properties of the subgroup lattice of the group of 2×2 matrices over Z_{13} like modularity, semi modularity, super modularity distributivity, consistency, the GD condition, pseudo complemented and super solvability have been validated.

Keywords: Lattice, Subgroup lattice, Lattice properties.

I. Introduction

Allow L(H) as the Subgroup Lattice of H, where H is $SL_2(Z_k)$.

If
$$\mathcal{G}=\operatorname{GL}_2(\mathbb{Z}_k)=\{\begin{pmatrix} x & y \\ z & w \end{pmatrix}: x, y, z, w \in \mathbb{Z}_k, xw-yz \neq 0\}$$
 and
G=SL₂(\mathbb{Z}_k) = { $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in \mathcal{G}: xw-yz = 1$ }, then H is a subgroup \mathcal{G}

Regarding order of groups, we will show that, $o(\mathcal{G}) = k(k^2-1)(k-1)$ [1] and $o(G) = k(k^2-1).$ [1]

For complete reference we provide the breakupof L(H) while k=13 [2]. Thus, we will investigate regarding to the entire said properties in L(H) of this article.

II. Basics

Lattice: Definition 1

A Poset L is said to be a lattice if $\{u, v\}$ and $\sup \{u, v\}$ exists for all $u, v \in L$.

Modular Lattice: Definition 2

For a lattice L, L is modular if $r \le u$ implies that $u \land (v \lor r) = (u \land v) \lor r$ for all u, v, $r \in L$.

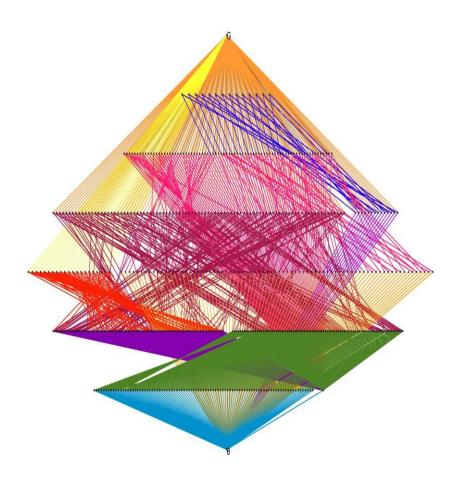
Upper-semi modular: Definition 3

For a lattice L, L is an**upper-semi modular** if $u \lor v$ covers u and v, $u \ne v$ and u and v cover $u \land v$.

Distributive lattice: Definition 2.5

For a lattice L, L is **distributive** if $u \lor (v \land r) = [(u \lor v) \land (u \lor r)]$ for all u, v, $r \in L$.

Now, we present the drawing of L(H) when k=13 [2] as shown in pic.1.



Pic.1: L(H) when k = 13

Row I : (Left to Right) H_1 to H_{14}

Row II : (Left to Right) E_1 to E_{78}

Row III : (Left to Right) C_1 to C_{91} and D_1 to D_{14}

Row IV : (Left to Right) B_1 to B_{21} and A_1 to A_{78}

Row V : (Left to Right) Y_1 to Y_{91} and Z_1 to Z_{91}

Row VI : (Left to Right) X_1 to X_{91} and \mathcal{H}_1

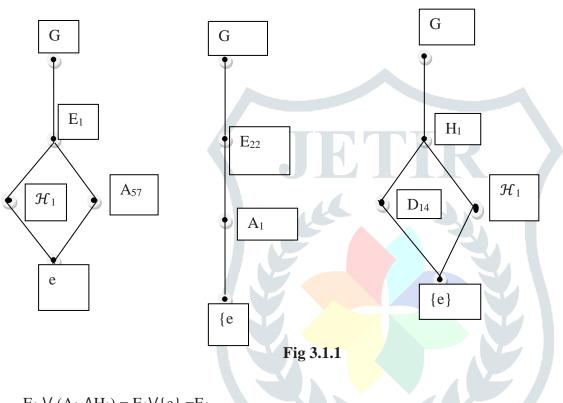
© 2023 JETIR December 2023, Volume 10, Issue 12 III. Main Properties

Property 3.1

If k = 13, then L(G) is not modular,

Proof:

From the diagram shown in Pic.1, we take three subgroups E_1 , A_1 , $H_1 \in L(H)$.



 $E_1 \lor (A_1 \land H_1) = E_1 \lor \{e\} = E_1$

But, $(E_1 \lor A_1) \land H_1 = G \land H_1 = H_1$

Hence $E_1 \vee (A_1 \wedge H_1) \neq (E_1 \vee A_1) \wedge H_1$

Otherwise, $(E_1 \wedge H_1) \vee (A_1 \wedge H_1) = \{e\} \vee \{e\} = e$.

But, $[(E_1 \land H_1) \lor A_1] \land H_1 = (\mathcal{H}_1 \lor A_1) \land H_1 = G \land H_1 = H_1.$

Therefore, $(E_1 \land H_1) \lor (A_1 \land H_1) \neq [(E_1 \land H_1) \lor A_1] \land H_1$

Consequently, L(G) is not modular when p = 13.

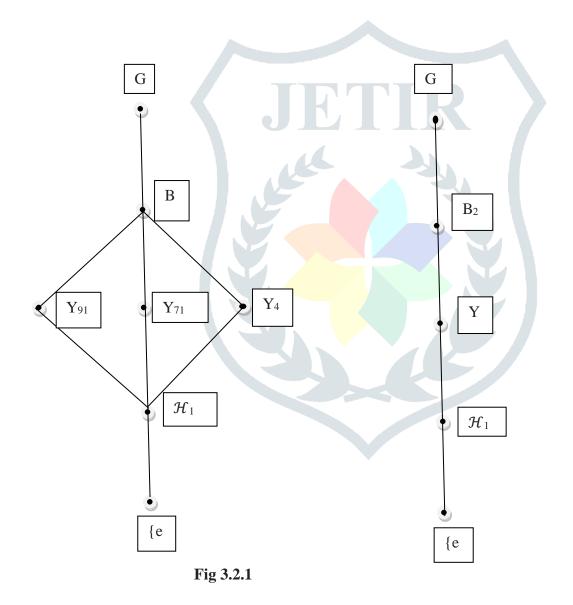
L(G) is not upper semi modular if k=13.

Proof:

As of the diagram shown in Pic.1, we take two subgroups $B_1, Y_1 \in L(G)$.

 $B_1 \wedge Y_1 = \mathcal{H}_1$ which is covered by B_1 while $B_1 \vee Y_1 = G$ which does not cover Y_1 .

Therefore L(G) is not upper semi modular when p = 13.

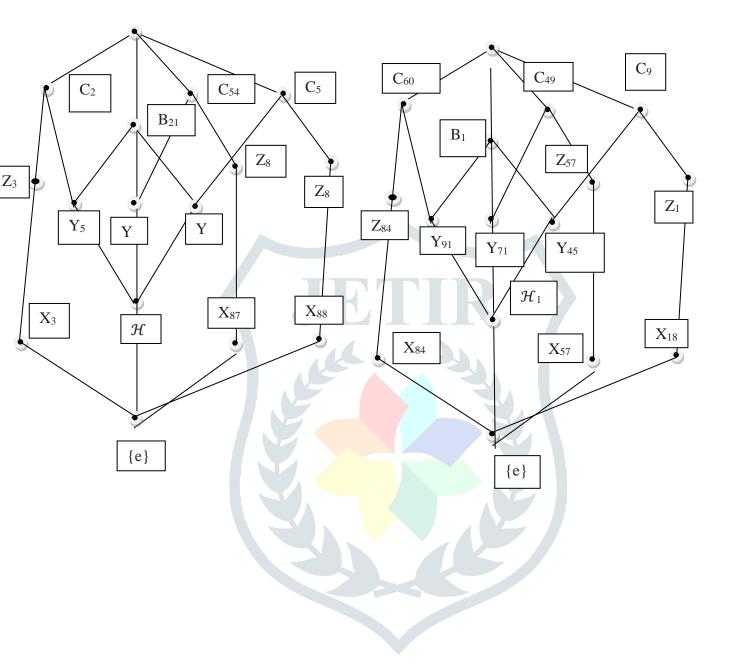


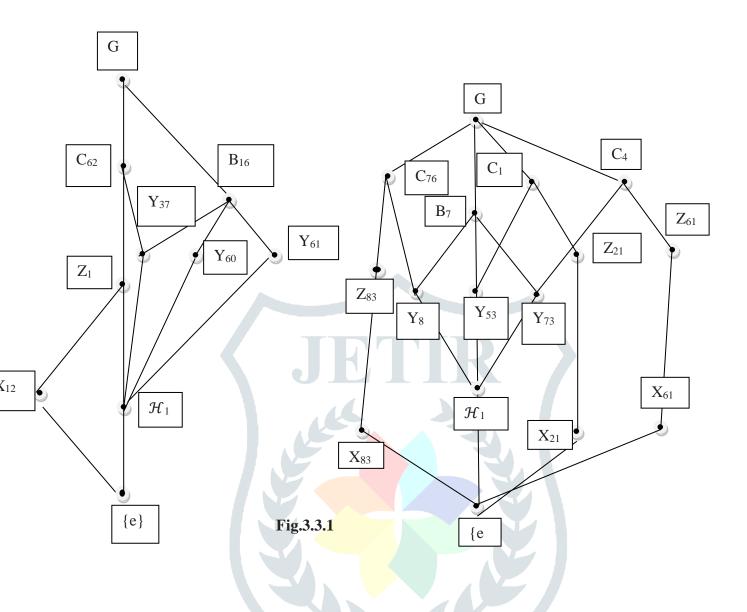
Property 3.3

If k = 13, then L(G) is not super modular.

Proof:

00From Pic.1, Let Y_1 , Z_1 , B_1 , C_1 , $\in L(G)$. Then





 $(Y_1 \ VZ_1) \ \Lambda(Y_1 \ VB_1) \ \Lambda(Y_1 \ VC_1) = G \ \Lambda \ G \ \Lambda \ G = G$

But, $Y_1 \vee [Z_1 \wedge B_1 \wedge (Y_1 \vee C_1)] \vee [B_1 \wedge C_1 \wedge (Y_1 \vee Z_1)] \vee [Z_1 \wedge C_1 \wedge (Y_1 \vee B_1)]$

 $= Y_1 \bigvee [Z_1 \land B_1 \land G] \lor [B_1 \land C_1 \land G] \lor [Z_1 \land C_1 \land G]$

 $= \mathbf{Y}_1 \lor \mathcal{H}_1 \lor \mathcal{H}_1 \lor \mathcal{H}_1$

 $=Y_1.$

Therefore, $(Y_1 \ \forall Z_1) \land (Y_1 \ \forall B_1) \land (Y_1 \ \forall C_1) \neq Y_1 \ \forall [\ Z_1 \ \land B_1 \ \land (Y_1 \ \forall C_1)] \ \forall [\ B_1 \ \land C_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land C_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land C_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land C_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land C_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land C_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land C_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land (Y_1 \ \forall Z_1)] \ \forall [\ Z_1 \ \land (Y_1 \ \lor Z_1)] \ \forall [\ Z_1 \ \lor (Y_1 \ \lor Z_1)] \ \forall [\ Z_1 \ \land (Y_1 \ \lor Z_1)] \ \forall [\ Z_1 \ \lor (Y_1 \ \lor Z_1)] \ \forall [\ Z_1 \ \lor (Y_1 \ \lor Z_1)] \ \forall [\ Z_1 \ \lor (Y_1 \ \lor (Y_1 \ \lor Z_1)] \ \forall [\ Z_1 \ \lor (Y_1 \$

 $\Lambda C_1 \Lambda (Y_1 \vee B_1)$]

Consequently, L(G) is not super modular when p = 13.

If k = 13, then L(G) is not distributive.

Proof:

From Pic.1, We take three subgroups $Z_1, B_1, C_1 \in L(G)$.

We observe from Pic 1,

 $Z_1 \lor (B_1 \land C_1) = Z_1 \lor \mathcal{H}_1 = Z_1.$

But, $(Z_1 \lor B_1) \land (Z_1 \lor C_1) = G \land G = G$.

Therefore, $Z_1 \vee (B_1 \wedge C_1) \neq (Z_1 \vee B_1) \wedge (Z_1 \vee C_1)$.

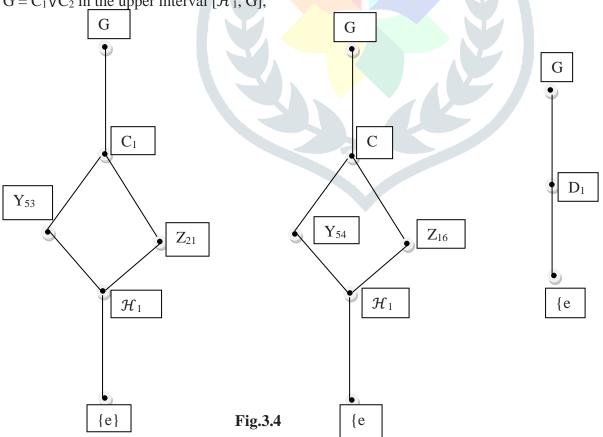
Therefore, verified the property.

Property 3.5

If k = 13, then L(G) is not consistent.

Proof:

We opt the join – irreducible element $D_1 \in L(G)$ for the case k=13. We find that when k = 13, $\mathcal{H}_1 \vee D_1 = G = C_1 \vee C_2$ in the upper interval [\mathcal{H}_1 , G],



So, L(G) is not consistent.

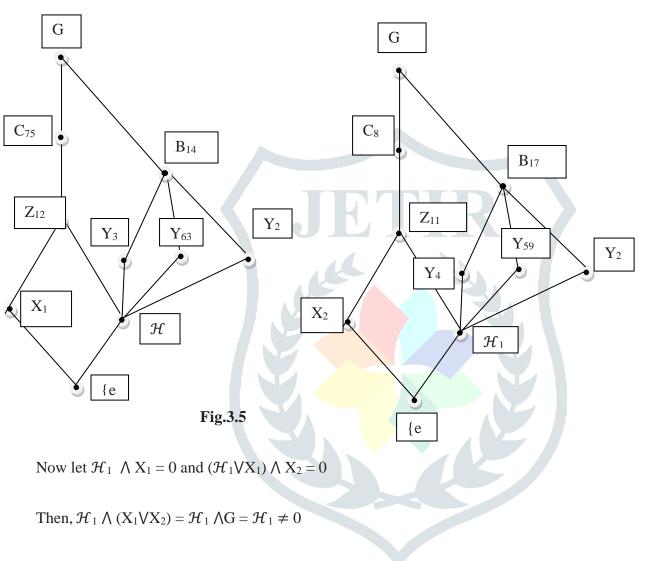
© 2023 JETIR December 2023, Volume 10, Issue 12

Property 3.6.

If k = 13, then the GD condition is not true in L(G).

Proof:

From Fig.1, we consider subgroups $\mathcal{H}_1, X_1, X_2 \in L(G)$.



 $\mathcal{H}_1 \wedge (X_1 \forall X_2) \neq 0.$

Hence the General disjointness condition is not true in L(G) when p = 13.

Property 3.7

If k = 13, then L(G) is not pseudo complemented.

Proof:

From Pic.1, we consider one subgroup $Y_{17} \in L(G)$.

Then, $Y_{17} \wedge D_1 = 0$ and if for any $\mathcal{H}_1 \in L(G)$ such that $\mathcal{H}_1 \subset D_1$.

Therefore, $\mathcal{H}_1 \wedge Y_{17} \neq 0$.

Consequently an element $D_1 \in L(G)$ is not pseudo complement of $Y_{17} \in L(G)$.

Hence L(G) is not pseudo complemented when p = 13.

.Thus, verified the property.

Property 3.8

Every atom is non - modular if k=13.

Proof:

Let an atoms A_2 , A_3 , A_4 say A_2 .

We have $D_{14} \subset H_1$

Now, $D_{14}V(A_2 \wedge H_1) = D_{14}V\{e\} = D_{14}$

But, $(D_{14}VA_2) \wedge H_1 = G \wedge H_1 = H_1$

Therefore, $D_{14}V(A_2 \wedge H_1) \neq (D_{14}VA_2) \wedge H_1$

Therefore A_2 is not modular in L(H) when p = 13.

Similarly we can prove that A₃ and A₄ are not modular.

By Similar argument, we can prove that all the other atoms in L(G) when p = 13 are not modular.

Hence there is no atom in L(G) when p=13, which is modular.

Property 3.9

If k = 13, then L(G) is not super solvable.

Proof:

By Property 3.8, we have, no atom in L(G) is modular, so there is no maximal chain in L(G) with modular elements.

Therefore, L(G) is not super solvable.

4. Conclusion

In this article, the properties of L(G) over Z_{13} like modularity, semi modularity, super modularity distributivity, consistency, the GD condition, pseudo complemented and super solvability have been proved and validated.

References

- 1. Jebaraj Thiraviam.D, A Study on some special types of lattices, Ph.D thesis, Manonmaniam Sundaranar University, 2015.
- 2. Seethalakshmi. R, Durai Murugan.V and Murugesan.R, On the lattice of subgroups of 2x2 matrices over Z₁₁, Malaya journal of Matematik, vol.S,No.1, 451-456, 2020.
- Hemalatha. R , Durai Murugan. V , Murugesan. R , Namasivayam. P , Seethalakshmi. R , An Investigation on the subdirect irreducibility of the subgroup lattices of the 2*2 matrices over Z₁₁ , Advances and Applications in Mathematical Sciences , 21(2) , (2021), 1009 – 1014.
- 4. Hemalatha. R , Durai Murugan. V , Murugesan. R , Namasivayam. P , Seethalakshmi. R , Lattice Construction of L(H) over Z_{13} ,South East Asian Journal of Mathematics and Mathematical Sciences 19 (2022) ,81 84 .
- 5. Hemalatha. R , Durai Murugan. V , Murugesan. R , Namasivayam. P , Seethalakshmi. R , Lattice Construction of L(H) over Z_{17} ,South East Asian Journal of Mathematics and Mathematical Sciences 19 (2022) ,51 54 .
- 6. Durai Murugan. V, Seethalakshmi. R, The Lattice Structure of the subgroups of order 21 in the subgroup lattices of 3*3 matrices over Z_2 , Journal of Physics : Conference Series , 1947(4) , (2021), 1 10.
- Durai Murugan. V , Seethalakshmi. R , The Lattice Structure of the subgroups of order 4 in the subgroup lattices of 3*3 matrices over Z₂, Malaya journal of Matematik, vol.S,No.1, 506 509, 2021.
- B. Baumslag, Theory and Problems of Group Theory :Schaum's outline Series, Mc Graw-Hill, New York, 1968.
- 9. C.F. Gardiner, A First Course in Group Theory, Springer-Verlag, Berlin, 1997.
- F. Laszlo, Structure and construction of fuzzy subgroup of a group, Fuzzy Set and System, 51 (1992), 105 109.
- 11. I.N. Herstein, Topics in Algebra, John Wiley and Sons, New York, 1975.
- 12. J.B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, London, 1992.
- M. Tarnauceanu and L. Bentea, On the number of fuzzy subgroups of finite abelian groups, Fuzzy Set and System., 159 (2008), 1084 - 1096.
- R. Sulaiman and Abd Ghafur Ahmad, Counting fuzzy subgroups of symmetric groups S₂, S₃ and alternating group A₄, Journal of Quality Measurement and Analysis., 6 (2010), 57 63.

© 2023 JETIR December 2023, Volume 10, Issue 12

- R. Sulaiman and Abd Ghafur Ahmad, The number of fuzzy subgroups of finite cyclic groups, International Mathematical Forum., 6 no.20 (2011), 987 - 994.
- 16. R. Sulaiman and Abd Ghafur Ahmad, The number of fuzzy subgroups of group defined by apresentation, International Journal of Algebra., 5 no.8 (2011), 375 382.
- 17. S. Roman, Lattice and Ordered Set, Springer, New York, 2008.

